Meta-Learning Orthographic and Contextual Models for Language Independent Named Entity Recognition

نویسندگان

  • Robert Munro
  • Daren Ler
  • Jon Patrick
چکیده

This paper presents a named entity classification system that utilises both orthographic and contextual information. The random subspace method was employed to generate and refine attribute models. Supervised and unsupervised learning techniques used in the recombination of models to produce the final results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Voted NER System using Appropriate Unlabeled Data

This paper reports a voted Named Entity Recognition (NER) system with the use of appropriate unlabeled data. The proposed method is based on the classifiers such as Maximum Entropy (ME), Conditional Random Field (CRF) and Support Vector Machine (SVM) and has been tested for Bengali. The system makes use of the language independent features in the form of different contextual and orthographic wo...

متن کامل

Named Entity Recognition for Manipuri Using Support Vector Machine

This paper reports about the development of a Manipuri NER system, a less computerized Indian language. Two different models, one using an active learning technique based on the context patterns generated from an unlabeled news corpus and the other based on the well known Support Vector Machine (SVM), have been developed. The active learning technique has been considered as the baseline system....

متن کامل

Language Independent NER using a Unified Model of Internal and Contextual Evidence

This paper investigates the use of a language independent model for named entity recognition based on iterative learning in a co-training fashion, using word-internal and contextual information as independent evidence sources. Its bootstrapping process begins with only seed entities and seed contexts extracted from the provided annotated corpus. F-measure exceeds 77 in Spanish and 72 in Dutch.

متن کامل

بهبود شناسایی موجودیت‌های نامدار فارسی با استفاده از کسره اضافه

Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003